

MARCO FALCONI Politecnico di Milano

Renormalization at any order of lattice infrared QED₄

(Joint work in progress with A. Giuliani & V. Mastropietro)

Probability Seminar HCM Bonn; January 26th, 2023.

Marco Falconi (PoliMi

IR LQED₄

Introductio

Introduction

Constructive QFT

- *Aim of CQFT*: Define interacting QFT by constructing euclidean correlations satisfying a suitable set of axioms.
- Techniques of CQFT: Rigorous path integral formulation (finite volume, UV and IR cutoffs) + Wilsonian RG; Invariant measures of Stochastic PDEs + Stochastic Quantization; Perturbative and non-perturbative AQFT.
- Successful Applications:
 - UV φ_d^4 , d = 2, 3 (triviality conjecture in d = 4)
 - IR φ_4^4 in $d \ge 4$, and in $d \le 3$ with long range interactions
 - UV Thirring and IR Luttinger models in d = 2
 - IR graphene (d = 2 + 1) and Weyl semimetal (d = 3 + 1)
 - QED₄ with massive photon
 - IR QED_d , $d \ge 2$ and large electron mass
 - IR non-relativistic QED
 - UV QED₃
 - UV SU(N) Yang-Mills in d = 3, 4
- Main Contributors: Aizenman, Ammari, Balaban, Benfatto, Brydges, Buchholz, Chatterjee, Derezinski, Dimock, Duminil-Copin, Feldman, Fredenhagen, Fröhlich, Gallavotti, Gawedzki, Gérard, Giuliani, Glimm, Gubinelli, Guerra, Guth, Haag, Hairer, Hiroshima, Hofmanova, Hurd, Jaffe, Kupiainen, Lieb, Magnen, Mastropietro, Mattis, Nelson, Pizzo, Porta, Rivasseau, Rosen, Rychkov, Scoppola, Segal, Seiler, Seneor, Simon, Spencer, Spohn, Velo, Wightman, ...

Marco Falconi (PoliMi)

QED_4 ?

- The list above does not include: QED₄ with massless photons and small electron mass, and the electroweak theory.
- Both theories are expected to be asymptotically free in the IR , and to have a Landau pole in the UV .
- \triangle Small hope to remove the UV cutoff \triangle
- Modern point of view: QED, EW are effective theories, valid only below the great unification scale.

No obstacle to the IR construction , even non-perturbative.

Perturbative IR QED₄

- At present, there is not even a satisfactory construction of infrared QED₄ at all orders in renormalized perturbation theory!
- It is crucial to reconcile Gauge Invariance/Ward Identities with the Wilsonian RG.

Introduction

- There are two important works in the literature on the perturbative renormalizability of IR QED₄ that are *intrinsically perturbative*: Feldman-Hurd-Rosen-Wright (1988) and Keller-Kopper (1996).
- FHRW. They use Gallavotti-Niccolò trees. In order to preserve the Ward identities, they introduce a *loop regularization* via a fermionic and two bosonic auxiliary fields, with action

$$\sum_{i=1}^{3} \bar{\phi}_{i} (-i\partial + M_{i} + eA)\phi_{i} ;$$

these additional terms make the model unstable.

- KK. They use Polchinski's flow equations. Non-gauge invariant counterterms such as A^2 and A^4 are added, that could make the model unstable if they have the wrong sign (for the A^4 term, see Bonini-D'Attanasio-Marchesini (1994)).
- Another interesting work, Dimock-Hurd (1992), assumes a very large electron mass (10² ratio with UV cutoff scale compared to 10⁻¹⁰ physical ratio):
 - DH. They integrate out the electron field, and use Brydges-Yau techniques for the effective photon theory, taking crucial advantage of the large electron mass.

Outline of main results

- Our results concern perturbative IR QED₄ at all orders, using a construction that overcome the previous drawbacks, and hopefully paves the way to a non-perturbative treatment. [We extend ideas previously developed for Weyl semimetals (IR QED₄ with massive photon) by Giuliani-Mastropietro-Portal (2012)]
- Massless electron (small electron mass as a corollary).
- UV cutoff (not to be removed) introduced in a "gauge-invariant" way by setting the model on a rectangular lattice , with lattice spacing ℓ.
- One single gauge-invariant counterterm , for the electron mass.
- Regularized model non-perturbatively well-defined , for small enough bare electron mass counterterm, and electric charge.
- The electric charge flows to zero in the IR (asymptotic freedom), driving the photon wavefunction renormalization to diverge logarithmically as expected (and canceling the spurious non-gauge-invariant terms generated by the RG flow, see below).

Marco Falconi (PoliMi)

Lattice QED

Lattice **QED**₄

The Bare Action

$$\begin{split} S_0(\psi,A) &= \frac{\ell^4}{2} \sum_{x \in \Lambda} \left(\sum_{\mu < \nu} \left| \mathrm{d}A(x,\mu,\nu) \right|^2 + \sum_{\mu} \left[\bar{\psi}(x) \gamma_{\mu} \mathrm{d}_A \psi(x,\mu) - \mathrm{d}_A \bar{\psi}(x,\mu) \gamma_{\mu} \psi(x) \right. \\ & \left. + r \ell \mathrm{d}_A \bar{\psi}(x,\mu) \mathrm{d}_A \psi(x,\mu) \right] + 2 \ell^{-1} \nu_N \bar{\psi}(x) \psi(x) \Big) \end{split}$$

$$\Lambda = \ell \mathbb{Z}^4 / L \mathbb{Z}^4$$

- $\ell = \ell_0 2^N$ lattice spacing, $L(\rightarrow \infty)$ size of the box
- $x \in \Lambda$ lattice vertices, $(x, \mu) \in \Lambda^1$ oriented edges, $(x, \mu, \nu) \in \Lambda^2$ oriented faces $(\mu < \nu)$, ...
- $\{\psi(x), \bar{\psi}(x)\}_{x \in \Lambda}$ Electron field (Grassmann field with 4 spinor components, antiperiodic b.c.)
- $\{A(x,\mu)\}_{(x,\mu)\in\Lambda^1}$ Photon field (real 1-form, with periodic b.c.)

Lattice QED₄

- r is the Wilson mass (to avoid the appearance of "unphysical particles" in the lattice model – preferred by us to fermion doubling)
- v_N is the electron mass counterterm

$$\blacksquare \operatorname{d}\! A(x,\mu,\nu) = \ell^{-1} \Big(A(x,\mu) - A(x,\nu) - A(x+\ell_{\mu},\mu) + A(x+\ell_{\mu},\nu) \Big)$$

• e_N is the bare electric charge

Remark

 $S_0\left(\sqrt{Z_N^\psi}\psi,\sqrt{Z_N^A}A
ight)$ is invariant under the local U(1) gauge transformation

$$\begin{cases} \bar{\psi}(x) \mapsto \bar{\psi}(x) e^{ie_N \sqrt{Z_N^A} \alpha(x)} \\ \psi(x) \mapsto \psi(x) e^{-ie_N \sqrt{Z_N^A} \alpha(x)} \\ A(x, \mu) \mapsto A(x, \mu) + d_0 \alpha(x, \mu) \end{cases}$$

Gauge Fixing

The average of observables

$$\langle O \rangle_{\Lambda} = \frac{\int \mathcal{D}\psi \int \mathcal{D}A e^{-S_0\left(\sqrt{Z_N^{\psi}}\psi,\sqrt{Z_N^A}A\right)} O(\psi,A)}{\int \mathcal{D}\psi \int \mathcal{D}A e^{-S_0\left(\sqrt{Z_N^{\psi}}\psi,\sqrt{Z_N^A}A\right)}}$$

does not make sense due to the existence of null directions yielded by gauge transformations, making the integrals divergent.

Gauge fixing :

$$\begin{split} S_{\xi}(\psi,A) &= \frac{\ell^4}{2} \sum_{x \in \Lambda} \left(\sum_{\mu < \nu} \left| \mathrm{d}A(x,\mu,\nu) \right|^2 + \xi |\mathrm{d}^*A(x)|^2 + \sum_{\mu} [\bar{\psi}(x)\gamma_{\mu} \mathrm{d}_A \psi(x,\mu) \\ &- \mathrm{d}_A \bar{\psi}(x,\mu)\gamma_{\mu} \psi(x) + r \ell \mathrm{d}_A \bar{\psi}(x,\mu) \mathrm{d}_A \psi(x,\mu)] + 2\ell^{-1} \nu_N \bar{\psi}(x) \psi(x) \right) \end{split}$$

with $\xi > 0$, $d^*A(x) = \ell^{-1} \sum_{\mu} (A(x - \ell_{\mu}, \mu) - A(x, \mu)).$

Breaking gauge invariance (part I)

- $\langle O \rangle_{\xi;\Lambda}$ is still ill-defined: there are still null directions due to constant $A(\cdot, \mu)$ (zero-modes of A).
- We introduce an infrared cutoff h^* in the photon covariance:

$$\langle O \rangle_{\xi;h^*,\Lambda} = \frac{\int P(\mathcal{D}\psi) \int P_{\xi;\geq h^*}(\mathcal{D}A) e^{-V^{(N)} \left(\sqrt{Z_N^{\psi}}\psi,\sqrt{Z_N^A}\right)} O(\psi,A)}{\int P(\mathcal{D}\psi) \int P_{\xi;\geq h^*}(\mathcal{D}A) e^{-V^{(N)} \left(\sqrt{Z_N^{\psi}}\psi,\sqrt{Z_N^A}\right)}}$$

• $P(\mathcal{D}\psi)$ is the Grassmann Gaussian measure with covariance

$$g(x-y) = \frac{1}{Z_N^{\psi}} \int \mathrm{d}k \ \frac{e^{-ik \cdot (x-y)}}{-i \sharp(k) + M_N(k)}$$

with $\sharp(k) = \ell^{-1} \sum_{\mu} \gamma_{\mu} \sin(\ell k_{\mu})$ and $M_N(k) = 2r\ell^{-1} \sum_{\mu} \sin^2(\frac{1}{2}\ell k_{\mu})$.

Lattice QED₄

• $P_{\xi:>h^*}(\mathcal{D}A)$ is the Gaussian measure with covariance

$$\begin{split} G_{\xi;\mu\nu}(x-y) &= \int \mathrm{d} k \; e^{-ik \cdot (x-y)} \frac{1-\chi_{h^*}(k)}{|\sigma(k)|^2} \bigg(\frac{1}{Z_N^A} \Big(\delta_{\mu\nu} - \frac{\sigma_{\mu}(k)\sigma_{\nu}(k)}{|\sigma(k)|^2} \Big) \\ &+ \frac{1}{\xi} \frac{\sigma_{\mu}(k)\overline{\sigma_{\nu}(k)}}{|\sigma(k)|^2} \bigg) \,. \end{split}$$

where $\sigma(k) = (\sigma_0(k), \sigma_1(k), \sigma_2(k), \sigma_3(k)), \sigma_\mu(k) = \frac{i}{\ell}(e^{-i\ell k_\mu} - 1)$, and $\chi_{h^*}(k) = \chi(2^{-h^*}\ell_0 k)$ with χ smooth, radial, compactly supported, monotone decreasing in $|\cdot|$, such that $\chi(k) = 1$ for $|k| \le 1$ and $\chi(k) = 0$ for $|k| \ge 2$.

$$\begin{aligned} & \quad V^{(N)}(\psi,A) = S_0(\psi,A) - \frac{\ell^4}{2} \sum_{x \in \Lambda} \left(\sum_{\mu < \nu} \left| \mathrm{d}A(x,\mu,\nu) \right|^2 + \\ & \quad \sum_{\mu} \left(\bar{\psi}(x) \gamma_{\mu} \mathrm{d}_0 \psi(x,\mu) - \mathrm{d}_0 \bar{\psi}(x) \gamma_{\mu} \psi(x) + r \ell \mathrm{d}_0 \bar{\psi}(x,\mu) \mathrm{d}\psi(x,\mu) \right) \right). \end{aligned}$$

Marco Falconi (PoliMi

Proposition

 $\langle O \rangle_{\xi;h^*,\Lambda}$ is well-defined (the functional integral is analytic) for e_N, v_N small.

Remark

• Λ In addition to gauge fixing, we broke gauge invariance with h^* Λ

This breaking of gauge invariance is "soft enough" to preserve the crucial Ward Identities: V^N is still gauge invariant.

Lattice QED₄

Lemma

If $O(\psi, A)$ is gauge-invariant, then $\langle O \rangle_{\xi;h^*,\Lambda} \equiv \langle O \rangle_{h^*,\Lambda}$ is independent of ξ .

Hence we choose $\xi \to \infty$ (Lorenz gauge), making the photon propagator purely transverse

$$G_{\mu\nu}(x-y) = \frac{1}{Z_N^A} \int \mathrm{d} k \; e^{-ik \cdot (x-y)} \frac{1-\chi_{h^*}(k)}{|\sigma(k)|^2} \Big(\delta_{\mu\nu} - \frac{\sigma_{\mu}(k)\sigma_{\nu}(k)}{|\sigma(k)|^2} \Big) \; .$$

• We can remove both cutoffs $L \to \infty$ (before, for convenience) and $h^* \to -\infty$, hence we define the averages (we are only able to show their existence perturbatively - i.e. for a truncated model - see below)

$$\langle O\rangle := \lim_{h^* \to -\infty} \lim_{L \to \infty} \langle O\rangle_{\infty;h^*,\Lambda}$$

To study correlations, we also introduce the generating function

$$e^{W_{h^*,\Lambda}(\phi,J)} = \int P(\mathcal{D}\psi) \int P_{\infty;\geq h^*}(\mathcal{D}A) e^{-V^{(N)}\left(\sqrt{Z_N^\psi}\psi,\sqrt{Z_N^A}(A+J)\right) + Z_N^\psi(\phi,\psi)}$$

Ward Identities

Gauge invariance of the interaction (and the properties of Gaussian integration) imply that

$$W_{h^*,\Lambda}(\phi,J) = W_{h^*,\Lambda}(e^{-ie_N\sqrt{Z_N^A}\alpha}\phi,J+\mathrm{d}\alpha)\;.$$

Differentiating the above w.r.t. α we get exact Ward Identities on the lattice:

$$\begin{split} \sum_{\mu} \sigma_{\mu}(p) \hat{\Pi}_{\mu,\mu_1,\dots,\mu_{n-1}}(p,p_1,\dots,p_{n-2}) &= 0 \\ \\ \sum_{\mu} \sigma_{\mu}(p) \hat{\Gamma}_{\mu}(p,k) &= e_N \sqrt{Z_N^A} \Big(\hat{\mathfrak{g}}(k) - \hat{\mathfrak{g}}(k+p) \Big) \end{split}$$

Lattice QED_4

$$\begin{split} & \Pi_{\mu_1,\dots,\mu_n}(x_1,\dots,x_n) = \frac{\delta^n W_{h^*,\Lambda}(0,J)}{\delta J(x_1,\mu_1)\cdots\delta J(x_n,\mu_n)} \Big|_{J=0} \\ & \bullet \Gamma_{\mu}(x,y,z) = \frac{\delta^3 W_{h^*,\Lambda}(\phi,J)}{\delta J(x,\mu)\delta\phi(z)\delta\bar{\phi}(y)} \Big|_{\phi=J=0} \\ & \bullet g(x,y) = \frac{\delta^2 W_{h^*,\Lambda}(\phi,0)}{\delta\phi(y)\delta\bar{\phi}(x)} \Big|_{\phi=0} \end{split}$$

Renormalization Group Analysis

Renormalization Group Analysis

Multiscale slicing of the integral

$$\label{eq:g} g = g^{(\leq N-1)} + g^{(N)} \ , \ \ G_{\mu\nu} = G^{\leq N-1}_{\mu\nu} + G^{(N)}_{\mu\nu}$$

•
$$g^{(N)}, G^{(N)}_{\mu\nu}$$
 supported on $k \sim \ell_0^{-1} 2^N$ (using χ_N).

$$\psi = \psi^{(\leq N-1)} + \psi^{(N)}$$
 , $A = A^{\leq N-1} + A^{(N)}$

$$\begin{array}{||c||} \hline P(\mathcal{D}\psi) = P_{\leq N-1}(\mathcal{D}\psi^{(\leq N-1)}) \times P_N(\mathcal{D}\psi^{(N)}) \\ \hline P_{\infty;\geq h^*}(\mathcal{D}A) = P_{[h^*,N-1]}(\mathcal{D}A^{\leq N-1}) \times P_N(\mathcal{D}A^{(N)}) \end{array}$$

Now we can integrate $P_N(\mathcal{D}\psi^{(N)})$ and $P_N(\mathcal{D}A^{(N)})$ out, and iterate by then integrating out slices of momenta ~ $2^{N-1}, \ldots, 2^h, \ldots$

Generating function at scale $h > h^*$

$$e^{W_{h^*,\Lambda}(\phi,J)} = e^{|\Lambda| \sum_{h < k \le N} E^{(k)}} \int P_{\le h}(\mathcal{D}\psi) \int P_{[h^*,h]}(\mathcal{D}A) e^{-V^{(h)} \left(\sqrt{Z_h^{\psi}}\psi,\sqrt{Z_h^A}(A+J),\sqrt{Z_h^{\psi}}\phi\right)}$$

The fermionic measure is Gaussian with covariance

$$\hat{g}^{(\leq h)}(k) = \frac{1}{Z_h^\psi} \frac{\chi_h(k)}{-i \sharp(k) + M_h(k)} \;,\; M_h(k) = \frac{Z_N^\psi}{Z_h^\psi} M_N(k) \;.$$

The bosonic measure is Gaussian with covariance

$$\hat{G}_{\mu\nu}^{(\leq h)}(k) = \frac{1}{Z_h^A} \frac{\chi_h(k) - \chi_{h^*}(k)}{|\sigma(k)|^2} \bigg(\delta_{\mu\nu} - \frac{\sigma_\mu(k)\sigma_\nu(k)}{|\sigma(k)|^2} \bigg)$$

.

$$\blacksquare V^{(h)} = \mathcal{L}V^{(h)} + \mathcal{R}V^{(h)}$$

$$\blacksquare \ \mathcal{R} V^{(h)} = \mathcal{R} V_{\mathrm{B}}^{(h),\infty} + \mathcal{R} V_{\mathrm{FSE}}^{(h)}$$

Using discrete symmetries ,

$$\begin{aligned} \mathcal{L}V^{(h)}(\psi,A,\phi) &= 2^{h}\tilde{\nu}_{h}\sum_{x}\bar{\psi}(x)\psi(x) + \frac{\tilde{z}_{h}^{\psi}}{2}\sum_{x,\mu}(\bar{\psi}(x)\gamma_{\mu}\mathrm{d}\psi(x,\mu) - \mathrm{d}\bar{\psi}(x,\mu)\gamma_{\mu}\psi(x)) \\ &+ \tilde{\eta}_{h}(\phi,\psi) + i\tilde{e}_{h}\sum_{x}\bar{\psi}(x)A(x)\psi(x) + 2^{2h}\tilde{m}_{h}\sum_{x,\mu}A(x,\mu)^{2} + \frac{\tilde{z}_{h}^{A}}{2}\sum_{x,\mu,\nu}|\mathrm{d}A(x,\mu,\nu)|^{2} \\ &+ \tilde{R}_{h}\sum_{x,\mu,\nu}\partial_{\mu}A(x,\mu)\partial_{\nu}A(x,\nu) + \tilde{S}_{h}\sum_{x,\mu}(\partial_{\mu}A(x,\mu))^{2} + \tilde{\kappa}_{h}\sum_{x,\mu}A(x,\mu)^{4} \\ &+ \tilde{\zeta}_{h}\sum_{x,\mu,\nu}A(x,\mu)^{2}A(x,\nu)^{2} \end{aligned}$$

■ Non-gauge-invariant terms are spurious, and must be shown to flow to zero in the limit $h^* \rightarrow -\infty$.

RCCs

The procedure outlined above allows us to express V^(h) as a function of the Running Coupling Constants :

$$\mathbf{v}_{h} = \left\{ \boldsymbol{v}_{h}, \boldsymbol{e}_{h}, \boldsymbol{\eta}_{h}, \boldsymbol{z}_{h}^{\psi}, \boldsymbol{z}_{h}^{A}, \boldsymbol{m}_{h}, \boldsymbol{R}_{h}, \boldsymbol{S}_{h}, \boldsymbol{\kappa}_{h}, \boldsymbol{\zeta}_{h} \right\}$$

$$z_h^{\psi} = \frac{Z_h^{\psi}}{Z_{h+1}^{\psi}} - 1, \ z_h^A = \frac{Z_h^A}{Z_{h+1}^A} - 1.$$

• \mathbf{v}_h is defined recursively, and thus it depends itself on $\{\mathbf{v}_k\}_{h < k \le N}$. The recursive equations are known as Beta function equations :

$$\begin{split} \nu_{h} &= 2\nu_{h+1} + B_{h}^{\nu}(\{\mathbf{v}_{k}\}_{h < k \le N}) & e_{h} &= e_{h+1} + B_{h}^{e}(\{\mathbf{v}_{k}\}_{h < k \le N}) \\ z_{h}^{\psi} &= B_{h}^{z\psi}(\{\mathbf{v}_{k}\}_{h < k \le N}) & z_{h}^{A} &= B_{h}^{z^{A}}(\{\mathbf{v}_{k}\}_{h < k \le N}) \\ m_{h} &= 4m_{h+1} + B_{h}^{m}(\{\mathbf{v}_{k}\}_{h < k \le N}) & \sharp_{h} &= \sharp_{h+1} + B_{h}^{\sharp}(\{\mathbf{v}_{k}\}_{h < k \le N}) \end{split}$$

with $\# \in \{\eta, R, S, \kappa, \zeta\}.$

- The iteration goes on until the scale h*. At this point the bosons are integrated out completely, and the resulting fermionic theory has an irrelevant quartic interaction. As a result, at scales h' < h, the RCCs are "frozen" at their values at h*.
- The iterative procedure is non-perturbative in nature, however the kernels of $V^{(h)}$ are written as a formal power series in $\{\mathbf{v}_k\}_{h < k \le N}$, with coefficients bounded in L^1 norm by $\boxed{C^n n!}$.
- Truncations of this series are sensible as long as the RCCs are small enough, uniformly in h; we will show this by studying the solution to truncations of the Beta function equations.

Flow of the Running Coupling Constants

Flow of the Running Coupling Constants

Controlling the spurious RCCs (and electron mass)

The flow of v_h to zero is controlled by tuning the counterterm v_N properly.

$$\blacksquare WI + Explicit control of a few diagrams \implies \sharp_{h^*} = e_{h^*}O(\varepsilon^{\lambda_{\sharp}})$$

Since $\lim_{h^* \to -\infty} e_{h^*} = 0$, the non-gauge-invariant terms vanish in the IR.

The flow of physical RCCs

$$\quad \boxed{ \text{Vertex WI} } \Rightarrow \left| \sqrt{Z_{h^*}^A} \, e_{h^*} = \sqrt{Z_N^A} \, e_N \left(1 + O(e_{h^*}^2) \right) \right| \, .$$

$$z_{h^*}^A = \frac{\ln 2}{6\pi^2} e_{h^*}^2 + O(e_{h^*}^4)$$

•
$$\therefore Z_{h^*}^A = Z_N^A \Big(1 + \frac{\ln 2}{6\pi^2} e_N^2 \big((N - h^*) + \dots \big) + O(e_N^4) \Big)$$

• :
$$e_{h^*}^2 = \frac{e_N^2}{1 + \frac{\ln 2}{6\pi^2} e_N^2 (N - h^*) + \cdots}$$

• $Z_{h^*}^{\psi} = Z_N^{\psi} (1 + O(e_{h^*}^2))$ (this flow is gauge-dependent, true in Lorenz gauge)

Optimal UV cutoff

If we fix
$$e_0$$
 such that $e_0^2 = \frac{4\pi}{137} \sim 0.092$, we get
 $e_N^2 \simeq \frac{e_0^2}{1 - \frac{\ln 2}{6\pi^2} e_0^2 N + \cdots}$

hence to make e_N small, one needs $N \leq C e_0^{-2}$, i.e. $\left| \ell \geq \ell_0 e^{-C e_0^{-2}} \right|$.

Outlook

Outlook

Further Steps

- Anisotropic Lattice (emergent symmetries ?)
- Non-perturbative definition of LQED: new ideas are required (Balaban-Dimock renormalization scheme ?)
- IR Lattice Electroweak Model (?)

Thank you for the attention!