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Introduction

Constructive QFT
Aim of CQFT: Define interacting QFT by constructing euclidean correlations
satisfying a suitable set of axioms.
Techniques of CQFT: Rigorous path integral formulation (finite volume, UV
and IR cutoffs) + Wilsonian RG; Invariant measures of Stochastic PDEs +
Stochastic Quantization; Perturbative and non-perturbative AQFT.
Successful Applications:

UV 𝜑4
𝑑, 𝑑 = 2, 3 (triviality conjecture in 𝑑 = 4)

IR 𝜑4
4 in 𝑑 ≥ 4, and in 𝑑 ≤ 3 with long range interactions

UV Thirring and IR Luttinger models in 𝑑 = 2
IR graphene (𝑑 = 2 + 1) and Weyl semimetal (𝑑 = 3 + 1)
QED4 with massive photon
IR QED𝑑, 𝑑 ≥ 2 and large electron mass
IR non-relativistic QED
UV QED3
UV 𝑆𝑈(𝑁) Yang-Mills in 𝑑 = 3, 4

Main Contributors: Aizenman, Ammari, Balaban, Benfatto, Brydges, Buchholz, Chatterjee, Derezinski,
Dimock, Duminil-Copin, Feldman, Fredenhagen, Fröhlich, Gallavotti, Gawedzki, Gérard, Giuliani, Glimm,
Gubinelli, Guerra, Guth, Haag, Hairer, Hiroshima, Hofmanova, Hurd, Jaffe, Kupiainen, Lieb, Magnen,
Mastropietro, Mattis, Nelson, Pizzo, Porta, Rivasseau, Rosen, Rychkov, Scoppola, Segal, Seiler, Seneor,
Simon, Spencer, Spohn, Velo, Wightman, …
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Introduction

QED4?

The list above does not include: QED4 with massless photons and small
electron mass, and the electroweak theory .

Both theories are expected to be asymptotically free in the IR , and to have
a Landau pole in the UV .

!△Small hope to remove the UV cutoff !△
Modern point of view: QED, EW are effective theories , valid only below the
great unification scale.

No obstacle to the IR construction , even non-perturbative.
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Introduction

Perturbative IR QED4

At present, there is not even a satisfactory construction of infrared QED4 at
all orders in renormalized perturbation theory!

It is crucial to reconcile Gauge Invariance/Ward Identities with the
Wilsonian RG .
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Introduction

There are two important works in the literature on the perturbative
renormalizability of IR QED4 that are intrinsically perturbative:
Feldman-Hurd-Rosen-Wright (1988) and Keller-Kopper (1996).

FHRW. They use Gallavotti-Niccolò trees. In order to preserve the Ward identities, they introduce a loop
regularization via a fermionic and two bosonic auxiliary fields, with action

3
∑
𝑖=1

�̄�𝑖(−𝑖 /𝜕 + 𝑀𝑖 + 𝑒 /𝐴)𝜙𝑖 ;

these additional terms make the model unstable.

KK. They use Polchinski’s flow equations. Non-gauge invariant counterterms such as 𝐴2 and 𝐴4 are
added, that could make the model unstable if they have the wrong sign (for the 𝐴4 term, see
Bonini-D’Attanasio-Marchesini (1994)).

Another interesting work, Dimock-Hurd (1992), assumes a very large electron
mass (102 ratio with UV cutoff scale compared to 10−10 physical ratio):
DH. They integrate out the electron field, and use Brydges-Yau techniques for the effective photon

theory, taking crucial advantage of the large electron mass.
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Introduction

Outline of main results
Our results concern perturbative IR QED4 at all orders, using a construction
that overcome the previous drawbacks, and hopefully paves the way to a
non-perturbative treatment. [We extend ideas previously developed for Weyl
semimetals (IR QED4 with massive photon) by Giuliani-Mastropietro-Portal (2012)]

Massless electron (small electron mass as a corollary).

UV cutoff (not to be removed) introduced in a “gauge-invariant” way by
setting the model on a rectangular lattice , with lattice spacing ℓ.

One single gauge-invariant counterterm , for the electron mass.

Regularized model non-perturbatively well-defined , for small enough bare
electron mass counterterm, and electric charge.

The electric charge flows to zero in the IR (asymptotic freedom), driving
the photon wavefunction renormalization to diverge logarithmically as
expected (and canceling the spurious non-gauge-invariant terms generated by
the RG flow, see below).
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Lattice QED4

The Bare Action

𝑆0(𝜓, 𝐴) = ℓ4
2 ∑

𝑥∈Λ
( ∑

𝜇<𝜈
∣d𝐴(𝑥, 𝜇, 𝜈)∣2 + ∑

𝜇
[�̄�(𝑥)𝛾𝜇d𝐴𝜓(𝑥, 𝜇) − d𝐴�̄�(𝑥, 𝜇)𝛾𝜇𝜓(𝑥)

+𝑟ℓd𝐴�̄�(𝑥, 𝜇)d𝐴𝜓(𝑥, 𝜇)] + 2ℓ−1𝜈𝑁�̄�(𝑥)𝜓(𝑥))

Λ = ℓℤ4/𝐿ℤ4

ℓ = ℓ02𝑁 lattice spacing, 𝐿(→ ∞) size of the box

𝑥 ∈ Λ lattice vertices, (𝑥, 𝜇) ∈ Λ1 oriented edges, (𝑥, 𝜇, 𝜈) ∈ Λ2 oriented
faces (𝜇 < 𝜈), …

{𝜓(𝑥), �̄�(𝑥)}𝑥∈Λ Electron field (Grassmann field with 4 spinor components,
antiperiodic b.c.)

{𝐴(𝑥, 𝜇)}(𝑥,𝜇)∈Λ1 Photon field (real 1-form, with periodic b.c.)
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Lattice QED4

𝑟 is the Wilson mass (to avoid the appearance of “unphysical particles” in
the lattice model – preferred by us to fermion doubling)

𝜈𝑁 is the electron mass counterterm

d𝐴(𝑥, 𝜇, 𝜈) = ℓ−1(𝐴(𝑥, 𝜇) − 𝐴(𝑥, 𝜈) − 𝐴(𝑥 + ℓ𝜇, 𝜇) + 𝐴(𝑥 + ℓ𝜇, 𝜈))

d𝐴𝜓(𝑥, 𝜇) = ℓ−1(𝑒𝑖ℓ𝑒𝑁 𝐴(𝑥,𝜇)𝜓(𝑥 + ℓ𝜇) − 𝜓(𝑥))

d𝐴�̄�(𝑥, 𝜇) = ℓ−1(𝑒−𝑖ℓ𝑒𝑁 𝐴(𝑥,𝜇)�̄�(𝑥 + ℓ𝜇) − �̄�(𝑥))

𝑒𝑁 is the bare electric charge

Remark
𝑆0(√𝑍𝜓

𝑁 𝜓, √𝑍𝐴
𝑁𝐴) is invariant under the local 𝑈(1) gauge transformation

⎧{{
⎨{{⎩

�̄�(𝑥) ⟼ �̄�(𝑥)𝑒𝑖𝑒𝑁 √𝑍𝐴
𝑁 𝛼(𝑥)

𝜓(𝑥) ⟼ 𝜓(𝑥)𝑒−𝑖𝑒𝑁 √𝑍𝐴
𝑁 𝛼(𝑥)

𝐴(𝑥, 𝜇) ⟼ 𝐴(𝑥, 𝜇) + d0𝛼(𝑥, 𝜇)
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Lattice QED4

Gauge Fixing
The average of observables

⟨𝑂⟩Λ =
∫ 𝒟𝜓 ∫ 𝒟𝐴𝑒−𝑆0(√𝑍𝜓

𝑁 𝜓,√𝑍𝐴
𝑁 𝐴)𝑂(𝜓, 𝐴)

∫ 𝒟𝜓 ∫ 𝒟𝐴𝑒−𝑆0(√𝑍𝜓
𝑁 𝜓,√𝑍𝐴

𝑁 𝐴)

does not make sense due to the existence of null directions yielded by gauge
transformations, making the integrals divergent.

Gauge fixing :

𝑆𝜉(𝜓, 𝐴) = ℓ4
2 ∑

𝑥∈Λ
( ∑

𝜇<𝜈
∣d𝐴(𝑥, 𝜇, 𝜈)∣2+𝜉|d∗𝐴(𝑥)|2 + ∑

𝜇
[�̄�(𝑥)𝛾𝜇d𝐴𝜓(𝑥, 𝜇)

−d𝐴�̄�(𝑥, 𝜇)𝛾𝜇𝜓(𝑥) + 𝑟ℓd𝐴�̄�(𝑥, 𝜇)d𝐴𝜓(𝑥, 𝜇)] + 2ℓ−1𝜈𝑁�̄�(𝑥)𝜓(𝑥))

with 𝜉 > 0, d∗𝐴(𝑥) = ℓ−1 ∑𝜇(𝐴(𝑥 − ℓ𝜇, 𝜇) − 𝐴(𝑥, 𝜇)).
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Lattice QED4

Breaking gauge invariance (part I)

⟨𝑂⟩𝜉;Λ is still ill-defined : there are still null directions due to constant
𝐴(⋅, 𝜇) (zero-modes of 𝐴).

We introduce an infrared cutoff ℎ∗ in the photon covariance:

⟨𝑂⟩𝜉;ℎ∗,Λ =
∫ 𝑃(𝒟𝜓) ∫ 𝑃𝜉;≥ℎ∗(𝒟𝐴)𝑒−𝑉 (𝑁)(√𝑍𝜓

𝑁 𝜓,√𝑍𝐴
𝑁 𝐴)𝑂(𝜓, 𝐴)

∫ 𝑃(𝒟𝜓) ∫ 𝑃𝜉;≥ℎ∗(𝒟𝐴)𝑒−𝑉 (𝑁)(√𝑍𝜓
𝑁 𝜓,√𝑍𝐴

𝑁 𝐴)

𝑃(𝒟𝜓) is the Grassmann Gaussian measure with covariance

𝑔(𝑥 − 𝑦) = 1
𝑍𝜓

𝑁
∫ d�̄� 𝑒−𝑖𝑘⋅(𝑥−𝑦)

−𝑖/𝑠(𝑘) + 𝑀𝑁(𝑘)

with /𝑠(𝑘) = ℓ−1 ∑𝜇 𝛾𝜇 sin(ℓ𝑘𝜇) and 𝑀𝑁(𝑘) = 2𝑟ℓ−1 ∑𝜇 sin2(1
2ℓ𝑘𝜇).
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Lattice QED4

𝑃𝜉;≥ℎ∗(𝒟𝐴) is the Gaussian measure with covariance

𝐺𝜉;𝜇𝜈(𝑥 − 𝑦) = ∫ d�̄� 𝑒−𝑖𝑘⋅(𝑥−𝑦) 1 − 𝜒ℎ∗(𝑘)
|𝜎(𝑘)|2 ( 1

𝑍𝐴
𝑁

(𝛿𝜇𝜈 −
𝜎𝜇(𝑘)𝜎𝜈(𝑘)

|𝜎(𝑘)|2 )

+ 1
𝜉

𝜎𝜇(𝑘)𝜎𝜈(𝑘)
|𝜎(𝑘)|2 ) .

where 𝜎(𝑘) = (𝜎0(𝑘), 𝜎1(𝑘), 𝜎2(𝑘), 𝜎3(𝑘)), 𝜎𝜇(𝑘) = 𝑖
ℓ (𝑒−𝑖ℓ𝑘𝜇 − 1), and

𝜒ℎ∗(𝑘) = 𝜒(2−ℎ∗ℓ0𝑘) with 𝜒 smooth, radial, compactly supported, monotone
decreasing in | ⋅ |, such that 𝜒(𝑘) = 1 for |𝑘| ≤ 1 and 𝜒(𝑘) = 0 for |𝑘| ≥ 2.

𝑉 (𝑁)(𝜓, 𝐴) = 𝑆0(𝜓, 𝐴) − ℓ4
2 ∑𝑥∈Λ(∑𝜇<𝜈∣d𝐴(𝑥, 𝜇, 𝜈)∣2 +

∑𝜇(�̄�(𝑥)𝛾𝜇d0𝜓(𝑥, 𝜇) − d0�̄�(𝑥)𝛾𝜇𝜓(𝑥) + 𝑟ℓd0�̄�(𝑥, 𝜇)d𝜓(𝑥, 𝜇))).
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Lattice QED4

Proposition
⟨𝑂⟩𝜉;ℎ∗,Λ is well-defined (the functional integral is analytic) for 𝑒𝑁 , 𝜈𝑁 small.

Remark
!△ In addition to gauge fixing, we broke gauge invariance with ℎ∗ !△
This breaking of gauge invariance is “soft enough” to preserve the crucial

Ward Identities: 𝑉𝑁 is still gauge invariant.
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Lattice QED4

Lemma
If 𝑂(𝜓, 𝐴) is gauge-invariant, then ⟨𝑂⟩𝜉;ℎ∗,Λ ≡ ⟨𝑂⟩ℎ∗,Λ is independent of 𝜉.

Hence we choose 𝜉 → ∞ (Lorenz gauge), making the photon propagator
purely transverse

𝐺𝜇𝜈(𝑥 − 𝑦) = 1
𝑍𝐴

𝑁
∫ d�̄� 𝑒−𝑖𝑘⋅(𝑥−𝑦) 1 − 𝜒ℎ∗(𝑘)

|𝜎(𝑘)|2 (𝛿𝜇𝜈 −
𝜎𝜇(𝑘)𝜎𝜈(𝑘)

|𝜎(𝑘)|2 ) .

We can remove both cutoffs 𝐿 → ∞ (before, for convenience) and ℎ∗ → −∞,
hence we define the averages (we are only able to show their existence
perturbatively – i.e. for a truncated model – see below)

⟨𝑂⟩ ∶= lim
ℎ∗→−∞

lim
𝐿→∞

⟨𝑂⟩∞;ℎ∗,Λ

To study correlations, we also introduce the generating function

𝑒𝑊ℎ∗,Λ(𝜙,𝐽) = ∫ 𝑃(𝒟𝜓) ∫ 𝑃∞;≥ℎ∗(𝒟𝐴)𝑒−𝑉 (𝑁)(√𝑍𝜓
𝑁 𝜓,√𝑍𝐴

𝑁 (𝐴+𝐽))+𝑍𝜓
𝑁 (𝜙,𝜓) .
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Lattice QED4

Ward Identities

Gauge invariance of the interaction (and the properties of Gaussian
integration) imply that

𝑊ℎ∗,Λ(𝜙, 𝐽) = 𝑊ℎ∗,Λ(𝑒−𝑖𝑒𝑁 √𝑍𝐴
𝑁 𝛼𝜙, 𝐽 + d𝛼) .

Differentiating the above w.r.t. 𝛼 we get exact Ward Identities on the
lattice:

∑
𝜇

𝜎𝜇(𝑝)Π̂𝜇,𝜇1,…,𝜇𝑛−1(𝑝, 𝑝1, … , 𝑝𝑛−2) = 0

∑
𝜇

𝜎𝜇(𝑝)Γ̂𝜇(𝑝, 𝑘) = 𝑒𝑁√𝑍𝐴
𝑁( ̂𝔤(𝑘) − ̂𝔤(𝑘 + 𝑝))
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Lattice QED4

Π𝜇1,…,𝜇𝑛(𝑥1, … , 𝑥𝑛) = 𝛿𝑛𝑊ℎ∗,Λ(0, 𝐽)
𝛿𝐽(𝑥1, 𝜇1) ⋯ 𝛿𝐽(𝑥𝑛, 𝜇𝑛) ∣

𝐽=0

Γ𝜇(𝑥, 𝑦, 𝑧) = 𝛿3𝑊ℎ∗,Λ(𝜙, 𝐽)
𝛿𝐽(𝑥, 𝜇)𝛿𝜙(𝑧)𝛿 ̄𝜙(𝑦) ∣

𝜙=𝐽=0

𝔤(𝑥, 𝑦) = 𝛿2𝑊ℎ∗,Λ(𝜙, 0)
𝛿𝜙(𝑦)𝛿 ̄𝜙(𝑥) ∣

𝜙=0
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Renormalization Group Analysis
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Renormalization Group Analysis

Multiscale slicing of the integral

𝑔 = 𝑔(≤𝑁−1) + 𝑔(𝑁) , 𝐺𝜇𝜈 = 𝐺≤𝑁−1𝜇𝜈 + 𝐺(𝑁)
𝜇𝜈

𝑔(𝑁), 𝐺(𝑁)
𝜇𝜈 supported on 𝑘 ∼ ℓ−1

0 2𝑁 (using 𝜒𝑁).

𝜓 = 𝜓(≤𝑁−1) + 𝜓(𝑁) , 𝐴 = 𝐴≤𝑁−1 + 𝐴(𝑁)

𝑃(𝒟𝜓) = 𝑃≤𝑁−1(𝒟𝜓(≤𝑁−1)) × 𝑃𝑁(𝒟𝜓(𝑁)) ,

𝑃∞;≥ℎ∗(𝒟𝐴) = 𝑃[ℎ∗,𝑁−1](𝒟𝐴≤𝑁−1) × 𝑃𝑁(𝒟𝐴(𝑁))

Now we can integrate 𝑃𝑁(𝒟𝜓(𝑁)) and 𝑃𝑁(𝒟𝐴(𝑁)) out, and iterate by then
integrating out slices of momenta ∼ 2𝑁−1, … , 2ℎ, …
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Renormalization Group Analysis

Generating function at scale ℎ > ℎ∗

𝑒𝑊ℎ∗,Λ(𝜙,𝐽) = 𝑒
|Λ| ∑

ℎ<𝑘≤𝑁
𝐸(𝑘)

∫ 𝑃≤ℎ(𝒟𝜓) ∫ 𝑃[ℎ∗,ℎ](𝒟𝐴)𝑒−𝑉 (ℎ)(√𝑍𝜓
ℎ 𝜓,√𝑍𝐴

ℎ (𝐴+𝐽),√𝑍𝜓
ℎ 𝜙)

The fermionic measure is Gaussian with covariance

̂𝑔(≤ℎ)(𝑘) = 1
𝑍𝜓

ℎ

𝜒ℎ(𝑘)
−𝑖/𝑠(𝑘) + 𝑀ℎ(𝑘) , 𝑀ℎ(𝑘) = 𝑍𝜓

𝑁
𝑍𝜓

ℎ
𝑀𝑁(𝑘) .

The bosonic measure is Gaussian with covariance

̂𝐺(≤ℎ)
𝜇𝜈 (𝑘) = 1

𝑍𝐴
ℎ

𝜒ℎ(𝑘) − 𝜒ℎ∗(𝑘)
|𝜎(𝑘)|2 (𝛿𝜇𝜈 −

𝜎𝜇(𝑘)𝜎𝜈(𝑘)
|𝜎(𝑘)|2 ) .
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Renormalization Group Analysis

𝑉 (ℎ) = ℒ𝑉 (ℎ) + ℛ𝑉 (ℎ)

ℛ𝑉 (ℎ) = ℛ𝑉 (ℎ),∞
B + ℛ𝑉 (ℎ)

FSE

Using discrete symmetries ,

ℒ𝑉 (ℎ)(𝜓, 𝐴, 𝜙) = 2ℎ�̃�ℎ ∑
𝑥

�̄�(𝑥)𝜓(𝑥) + ̃𝑧𝜓
ℎ
2 ∑

𝑥,𝜇
(�̄�(𝑥)𝛾𝜇d𝜓(𝑥, 𝜇) − d�̄�(𝑥, 𝜇)𝛾𝜇𝜓(𝑥))

+ �̃�ℎ(𝜙, 𝜓)+ 𝑖 ̃𝑒ℎ ∑
𝑥

�̄�(𝑥) /𝐴(𝑥)𝜓(𝑥)+22ℎ�̃�ℎ ∑
𝑥,𝜇

𝐴(𝑥, 𝜇)2 + ̃𝑧𝐴
ℎ
2 ∑

𝑥,𝜇,𝜈
|d𝐴(𝑥, 𝜇, 𝜈)|2

+ �̃�ℎ ∑
𝑥,𝜇,𝜈

𝜕𝜇𝐴(𝑥, 𝜇)𝜕𝜈𝐴(𝑥, 𝜈) + ̃𝑆ℎ ∑
𝑥,𝜇

(𝜕𝜇𝐴(𝑥, 𝜇))2 + �̃�ℎ ∑
𝑥,𝜇

𝐴(𝑥, 𝜇)4

+ ̃𝜁ℎ ∑
𝑥,𝜇,𝜈

𝐴(𝑥, 𝜇)2𝐴(𝑥, 𝜈)2

Non-gauge-invariant terms are spurious, and must be shown to flow to zero
in the limit ℎ∗ → −∞.
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RCCs
The procedure outlined above allows us to express 𝑉 (ℎ) as a function of the
Running Coupling Constants :

vℎ = {𝜈ℎ, 𝑒ℎ, 𝜂ℎ, 𝑧𝜓
ℎ , 𝑧𝐴

ℎ , 𝑚ℎ, 𝑅ℎ, 𝑆ℎ, 𝜅ℎ, 𝜁ℎ}

𝑧𝜓
ℎ = 𝑍𝜓

ℎ
𝑍𝜓

ℎ+1
− 1, 𝑧𝐴

ℎ = 𝑍𝐴
ℎ

𝑍𝐴
ℎ+1

− 1.

vℎ is defined recursively, and thus it depends itself on {v𝑘}ℎ<𝑘≤𝑁 . The
recursive equations are known as Beta function equations :

𝜈ℎ = 2𝜈ℎ+1 + 𝐵𝜈
ℎ ({v𝑘}ℎ<𝑘≤𝑁) 𝑒ℎ = 𝑒ℎ+1 + 𝐵𝑒

ℎ({v𝑘}ℎ<𝑘≤𝑁)
𝑧𝜓
ℎ = 𝐵𝑧𝜓

ℎ ({v𝑘}ℎ<𝑘≤𝑁) 𝑧𝐴
ℎ = 𝐵𝑧𝐴

ℎ ({v𝑘}ℎ<𝑘≤𝑁)
𝑚ℎ = 4𝑚ℎ+1 + 𝐵𝑚

ℎ ({v𝑘}ℎ<𝑘≤𝑁) ♯ℎ = ♯ℎ+1 + 𝐵♯
ℎ({v𝑘}ℎ<𝑘≤𝑁)

with ♯ ∈ {𝜂, 𝑅, 𝑆, 𝜅, 𝜁}.
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Renormalization Group Analysis

The iteration goes on until the scale ℎ∗. At this point the bosons are
integrated out completely, and the resulting fermionic theory has an irrelevant
quartic interaction. As a result, at scales ℎ′ < ℎ, the RCCs are “frozen” at
their values at ℎ∗.

The iterative procedure is non-perturbative in nature , however the kernels
of 𝑉 (ℎ) are written as a formal power series in {v𝑘}ℎ<𝑘≤𝑁 , with coefficients
bounded in 𝐿1 norm by 𝐶𝑛𝑛! .

Truncations of this series are sensible as long as the RCCs are small enough,
uniformly in ℎ; we will show this by studying the solution to truncations of
the Beta function equations.
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Flow of the Running Coupling Constants

Flow of the Running Coupling Constants
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Flow of the Running Coupling Constants

Controlling the spurious RCCs (and electron mass)

The flow of 𝜈ℎ to zero is controlled by tuning the counterterm 𝜈𝑁 properly.

WI + Explicit control of a few diagrams ⟹ ♯ℎ∗ = 𝑒ℎ∗𝑂(𝜀𝜆♯) .

Since lim
ℎ∗→−∞

𝑒ℎ∗ = 0, the non-gauge-invariant terms vanish in the IR .
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Flow of the Running Coupling Constants

The flow of physical RCCs

Vertex WI ⟹ √𝑍𝐴
ℎ∗ 𝑒ℎ∗ = √𝑍𝐴

𝑁 𝑒𝑁 (1 + 𝑂(𝑒2
ℎ∗)) .

𝑧𝐴
ℎ∗ = ln 2

6𝜋2 𝑒2
ℎ∗ + 𝑂(𝑒4

ℎ∗)

∴ 𝑍𝐴
ℎ∗ = 𝑍𝐴

𝑁(1 + ln 2
6𝜋2 𝑒2

𝑁((𝑁 − ℎ∗) + ⋯ ) + 𝑂(𝑒4
𝑁))

∴ 𝑒2
ℎ∗ = 𝑒2

𝑁
1 + ln 2

6𝜋2 𝑒2
𝑁(𝑁 − ℎ∗) + ⋯

𝑍𝜓
ℎ∗ = 𝑍𝜓

𝑁 (1 + 𝑂(𝑒2
ℎ∗)) (this flow is gauge-dependent, true in Lorenz gauge)
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Flow of the Running Coupling Constants

Optimal UV cutoff

If we fix 𝑒0 such that 𝑒2
0 = 4𝜋

137 ∼ 0.092 , we get

𝑒2
𝑁 ≃ 𝑒2

0
1 − ln 2

6𝜋2 𝑒2
0𝑁 + ⋯

hence to make 𝑒𝑁 small, one needs 𝑁 ≤ 𝐶𝑒−2
0 , i.e. ℓ ≥ ℓ0𝑒−𝐶𝑒−2

0 .
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Outlook

Outlook
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Outlook

Further Steps

Anisotropic Lattice (emergent symmetries ?)

Non-perturbative definition of LQED: new ideas are required
(Balaban-Dimock renormalization scheme ?)

IR Lattice Electroweak Model (?)
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Thank you for the attention!

Thank you for the attention!
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